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where S(x, O) = 0 and I in a s needs to be interpreted as the 
latent heat of vaporization per unit mass. 

As an example we consider a pulse with shape given by 

Q(x, t) = Qoa(x) 

where Qo is a constant. The integration of equation (14) 
produces 

-{ - erfc I-Co IXl]~ 
S,.,, exp L 4n ] L ~ ] J '  

where X = X/Sm,, and S~,, = S(O, t) = Qo~%t/a) ½. 
For large values of Qo] XI/2n~, the solution t15)becomes 

[4] 

S 2n f QoX2"~ 2a 
Sma, -- e o - - ~  exp / J \ - -  - ~ - - ]  --- eo~X ~ 

Therefore if the surface aperture is measured by the distance 
at which SIS .... = g2 = a small constant, then the radius of 
the aperture is given by 

x, ~ ~/(2)(%t)½. 
£ 

The hole spreads along the surface proportional to t t. The 
same conclusion is reached by Boley and Yagoda [-1] from 
their early time solutions. It is also seen that the spreading is a 
function of % only. 

K(T v - To) 

~' = p[C~(T~ - To) + lvtl - l /n)]  

where T~ is the temperature of boiling point and Iv the latent 
heat of vaporization per unit mass. 

However, contrary to Boley and Vagoda [1], the maximum 
penetration into the solid is also proportional to t ½. For 
example, in aluminum, a crater depth of one millimeter may 
be produced by a millisecond-duration pulse with the heat 
flux of 15 kW(cm. This value falls in the range of representative 
values given in Ready [51. 

The shape of holes must be computed with a much more 
realistic heat input than the delta function, but this may 
require a numerical integration of equation (14). If equation 
(15) is used, then the slope of the hole at X = 0 = - Qo/2 
may be used as a measure for the steepness of the hole. For 
aluminum and the heat flux of 15 kW/cm, the slope is about 
-3 .  This is again comparable with a configuration of hole 
shown in Ready [5]. 

REFERENCES 
1. B. A. Boley and H. P. Yagoda, The starting solution for 

two-dimensional heat conduction problems with change 
of phase, Q. Appl. Math. 1, 223-246 (1969). 

2. D. L. Sikarski and B. A. Boley, The solution of a class of 
two-dimensional melting and solidification problems, 
Int. J. Solids Struct. 1, 207-234 (1965). 

3. M. N. Ozisik, Boundary Value Problems of Heat Con- 
duction, p. 83. International Textbook Company (1968). 

4. A. V. Luikov, Ana/ytical Heat Diffusion Theory, p. 651. 
Academic Press, New York (1971). 

5. J. F. Ready, Effects of High-Power Laser Radiation, 
Chapt. 3. Academic Press, New York (1971). 

Int. J. Heat Mass Transfer. Vol. 17. pp. 455 457. Pergamon Press 1974. Printed in Great  Britain 

I N F L U E N C E  O F  T H E R M A L  P R O P E R T I E S  

O N  F I L M  C O O L I N G  E F F E C T I V E N E S S  

A. HAJI-SHEIKH and J. R. LEITH 
Mechanical Engineering Department, University of Texas at Arlington, Arlington, Texas 76010, U.S.A. 

(Received 17 May 1973 and in revised form 24 July 1973) 

INTRODUCTION 

THE RECENT publication of Analysis of Heat and Mass 
Transfer [1] and the re-introduction of a semi-analytical 
analysis of the film cooling effectiveness of [2] is the 
motivation for these authors to present certain aspects of 
the problem not yet available in the literature. Although the 
effectiveness presented in [1, 2] yields satisfactory agreement 
with experimental data, it is questionable as to whether the 

influence of variable fluid properties is expressed correctly 
[I]. In the present investigation, an attempt is made to study 
the influencing effect of the fluid properties in a purely 
analytical manner. The only empirical relation considered is 
the well-known Prandtl equation relating shear stress to 
momentum thickness. Also, it has been assumed that a 
power law relation ulu, = (y16) 1/" for the velocity distribution 
in the boundary layer holds far downstream from the slot. 
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The nomenclature utilized are those of [1], and are men- 
tioned here in lhe text. The film cooling effectiveness is 
expressed by 

1/2 
r/ = - (l) 

1 + de,; m,, 
('p,. tHs 

wherein subscripts e and c denote mainst ream and coolant 
conditions respectively. The mass flux passing through the 
slot is m~ and the mass entrainment into the boundary layer 
from the mainst ream is m~. The value of 1//2 may be cal- 
culated by using the asymptotic behavior of equation (I) 
as [ 1 ]  

1/'). ~ l '9Pr2:3a (2) 

in which 

l / I xo.,)n ,~ 

It should be noted that the length L ahead of the slot is 
included in this analysis. However, in [1], it is assumed 
that L = 0 and consequently a = 1. Finally, the following 
relation for film cooling effectiveness is presented in refer- 
ence [1] as 

1.9 P r  2 3 
t/ . . . . . .  (31 

1 +0'329 ca  ~fl 
ce,. 

where 

and 

\ f i l l  ~ m, / R e [  0.2 (3a) 

X 1 = .\" -- S 

/uA 
f l = l + l . 5 x t O  4 R e , ~ ' u l ) s i n ~ .  (3b) 

The value of fl was determined using available experimental 
data downstream from the slot [2]. It should be emphasized 
that fl > 1 when x is finite. As x becomes large, the boundary 
layer thickness increases, and the value of fl should approach 
unity. Therefore, fl as an  independent function of the co- 
ordinate x is a valid assumption only for a small range of x 
somewhere downstream from the slot. 

ANALYSIS 

By use of the momentum-integral  theorem, the entrained 
mass is 

m,, = /7 , . uA3  - 6 " )  - m~, (4) 

where ,5 and 6" are the boundary layer thickness and dis- 
placement thickness, and y~ is the average density within 
the  b o u n d a r y  layer.  Better  a c c u r a c y  m a y  be o b t a i n e d  if ¢7~ is 
calculated at temperature T using the equation [1 ]  

TAw-T~,  
r = r,, + ~-~ £ . %  , (5) 

in which TAw is the adiabatic wall temperature and T,, is the 
mainstream temperature. 

Integration of the mom en t um equation for x > s (far 
downstream from the slot) yields 

I :  m~ ,,,4 4:5 O.O128(x-s) ( 0 ,  + - - -  sin : ~  ] ,  (7) 
Olx) = (u~/v) ~'4 + " p,.u,, / A 

in which OL is the m o m e n t u m  thickness at the leading edge 
of the slot. 

When x is large and Jl = 7, the efl'cctiveness ~I becomes 
1'9 P r  2 ~a 

q = {8) 

I - ('e. + 0 '329 ~fl~ 
Cp, 

whe re  

i l l =  1+  + %-cRe . , s in~[  / /  / . (Sa) 
L \ x - . s l  Rex'F,  4~,, /J ] 

The parametrical similarity between this equation and the 
effectiveness derived in [1] is apparent. The similarity 
becomes clearer for L = 0. in which case the variation of [h 
for no upstream boundary layer development (L = 0) is 
plotted in Fig. 1. For comparison, the variation of ft. from 
equation (3b), has also been plotted in Fig. 1. 
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FIG. I. Comparison of [t [1,2] with fll (equation (8)). 
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FI(;. 2. Comparison of film cooling effectiveness of [1,2] 
with the present study: Re,, = 3 x 10 ~'. 

DISCUSSION 

It m a y  be seen f r o m  Fig. 1 that  the  e q u a t i o n s  for  fl a n d  
fll  y ie ld  near ly  the  s a m e  va lue  w h e n  R e x - s  is in  the  
n e i g h b o r h o o d  o f  3 x 10 6. S ince  fl is i n d e p e n d e n t  o f  R e : , ,  it  
w o u l d  not  take  the  v a l u e  o f  un i ty  as x a p p r o a c h e s  inf inity.  
As  can  be  seen in  Fig.  1. this  w o u l d  g ive  a d i s c r e p a n c y  
wi th  fll o f  a p p r o x i m a t e l y  10 per cent  for  Re~,  = 4 x 10 6, 
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and the difference would increase as Rex, increases. A com- 
promise for a solution at the vicinity of the slot may be 
obtained by letting Re~, = 3 x 106 and replacing the first 
term in the denominator of equation (8) by 1'9 Pr 2/3. This 
replacement forces r/ to be unity at the edge of the slot. 
hence satisfying the initial temperature requirement. The 
adjusted solution is shown in Fig. 2 as a comparison with 
the results of [1]. The value of s ins  is taken to be unity, 
corresponding to normal injection. The agreement is quite 
satisfactory. The only discrepancy is at small values of ~. 
Also, Rex, has been selected as a fixed quantity because 
the velocity profile in the boundary layer would approach 
a power-law profile depending on the value of Rex, rather 

than ~. The value of n at Re~, = 3 x 106 is approximately 
5'5 [3] in the absence of secondary flow. 
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INTRODUCTION 

THE PROBLEM of free convection over a semi-infinite iso- 
thermal flat plate has been analysed in the literature [1]. 
Such analysis involved a numerical solution of a boundary 
value problem which required iteration in order to satisfy 
the conditions stated at the boundaries for every value of 
Prandtl number, Pr. In the present note we present a non- 
iterative method, known as the method of parameter differ- 
entiation, to solve the same problem for various values of Pr. 
The method requires no iteration once a solution or the 
initial conditions of such a solution are known for one value 
of Pr. In the event a starting solution or conditions are not 
available, iteration is then required only for one value of Pr. 
Results for other values of Pr are then obtained by in- 
tegrating the rate of  change of the solution with respect to 
the parameter Pr. Each step in the calculation involves only 
a small perturbation in the parameter. By this approach, 
the equations solved are linear differential equations which 
can be solved noniteratively. Even though this method has 
been applied to the solution of simpler equations [2, 3], its 
application to the simultaneous nonlinear ordinary differ- 
ential equations for the purpose of eliminating iteration is 
not evident in the literature. We like to note that Narayana 
and Ramamoorthy [4], in their analysis of the compressible 
boundary layer equations, attempted to eliminate iteration 
using the method of parameter differentiation. However, 
their attempt was not successful. This is due to the fact that 
they chose a two-parameter two-term superposition tech- 
nique for their solution instead of a two-parameter three- 
term superposition like the one given by equations (7) and 
(8) in the present note. The choice of the number of terms 
in the solution, as it will become evident later on in the note, 
depends upon the number of the missing initial conditions 
in the solution. 
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ANALYSIS 

The nonlinear ordinary differential equations governing 
the natural convection boundary layer flow over a semi- 
infinite isothermal fiat plate in terms of similarity variables 
can be written in the usual notations as 

F ~  + 3FF~.- 2F 2 + 0 = 0 (1) 

0.. + 3PrFO. = 0 (2) 

subject to the boundary conditions 

t /=  0: F(0) = F.(0) = 0, 0(0) = 1 

r /=  ~ : F . ( o o ) = 0 ,  0 (oo)=0.  

The subscript q implies differentiation with respect to q. In 
this note solutions are sought for different values of the 
parameter Pr. Differentiating equations (1) and (2) with 
respect to Pr we get 

g~. + 3F~.g + 3Fg. . -  4F.g. + T = 0 (3) 

T,, + 3FO~ + 3PrgO, + 3PrFT, = 0 (4) 

where 

~F cOO 
g = ~ r  and T = ~ p ~  (5) 

with the boundary conditions 

t /=  0: g(0) = g.(0) = 0. T(0) = 0 
(6) 

~/= ~ : g . ( o c )  = 0 ,  T ( o c )  = 0 .  

Equations (3) and (4) are now linear, and their solutions 
can be obtained by separating the dependent variables as 

g = gl +292 +/tO3 (7) 

T = TI+2T2+ItT3. (8) 


